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Abstract

Apparent electrical conductivity (ECa) of the soil profile can be used as an indirect indicator of a
number of soil physical and chemical properties. Commercially available ECa sensors can efficiently
and inexpensively develop the spatially dense datasets desirable for describing within-field spatial soil
variability in precision agriculture. The objective of this research was to relate ECa data to measured
soil properties across a wide range of soil types, management practices, and climatic conditions. Data
were collected with a non-contact, electromagnetic induction-based ECa sensor (Geonics EM38) and
a coulter-based sensor (Veris 3100) on 12 fields in 6 states of the north-central United States. At 12–20
sampling sites in each field, 120-cm deep soil cores were obtained and used for soil property deter-
mination. Within individual fields, EM38 data collected in the vertical dipole orientation (0–150 cm

Abbreviations:CEC, cation exchange capacity; DGPS, differential global positioning system; EC, electrical
conductivity; ECa, apparent soil electrical conductivity; ECa-sh, shallow (0–30 cm) ECa measured by Veris 3100;
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depth) and Veris 3100 deep (0–100 cm depth) data were most highly correlated. Differences between
ECa sensors were more pronounced on more layered soils, such as the claypan soils of the Missouri
fields, due to differences in depth-weighted sensor response curves. Correlations of ECa with clay
content and cation exchange capacity (CEC) were generally highest and most persistent across all
fields and ECa data types. Other soil properties (soil moisture, silt, sand, organic C, and paste EC)
were strongly related to ECa in some study fields but not in others. Regressions estimating clay and
CEC as a function of ECa across all study fields were reasonably accurate (r2 ≥ 0.55). Thus, it may
be feasible to develop relationships between ECa and clay and CEC that are applicable across a wide
range of soil and climatic conditions.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Efficient and accurate methods of measuring within-field variations in soil properties are
important for precision agriculture. Sensors that can collect dense datasets while traversing a
field provide several advantages over traditional measurement methods that involve soil sam-
ple collection and analysis. These advantages may include lower cost, increased efficiency,
and more timely results. In addition, the ability to obtain data at many more points with a
sensor, as compared to sampling methods, means that overall spatial estimation accuracy
can increase even if the accuracy of individual measurements is lower (Sudduth et al., 1997).

Apparent electrical conductivity (ECa) of the soil profile is a sensor-based measurement
that can provide an indirect indicator of important soil physical and chemical properties.
Soil salinity, clay content, cation exchange capacity (CEC), clay mineralogy, soil pore size
and distribution, and soil moisture content are some of the factors that affect ECa (McNeill,
1992; Rhoades et al., 1999). Most of the variation in ECa can be related to salt concentration
for saline soils (Williams and Baker, 1982). In non-saline soils, conductivity variations are
primarily a function of soil texture, moisture content, and CEC (Rhoades et al., 1976). A
theoretical basis for the relationship between ECa and soil properties was developed by
Rhoades et al. (1989). In this model, ECa was a function of soil water content, the electrical
conductivity of the soil water, soil bulk density, and the electrical conductivity of the soil
particles. Recently, techniques have been developed to use this model for predicting the
expected correlation structure between ECa data and multiple soil properties of interest
(Lesch and Corwin, 2003).

Two types of portable, within-field ECa sensors are commercially available for agricul-
ture, an electrode-based sensor requiring soil contact and a non-contact electromagnetic
induction (EM) sensor. In an early report of the electrode-based approach,Halvorson and
Rhoades (1976)measured ECa with a four-electrode sensor and used these measurements to
create maps of soil salinity variations in a field. Later, a version of the electrode-based sen-
sor was tractor-mounted for mobile, georeferenced measurements of ECa (Rhoades, 1993).
A commercial device implementing the electrode-based approach is the Veris 31001 (Veris

1 Mention of trade names or commercial products is solely for the purpose of providing specific information
and does not imply recommendation or endorsement by the US Department of Agriculture or its cooperators.
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Technologies, Salina, KS), which uses six rolling coulters for electrodes and provides two
simultaneous ECa measurements (Lund et al., 1999).

The EM-based ECa sensor most often used in agriculture is the EM38 (Geonics Limited,
Mississauga, Ont., Canada), which was initially developed for root-zone salinity assessment
(Rhoades and Corwin, 1981). Details of the EM sensing approach are given byMcNeill
(1992). The EM38 is a lightweight bar designed to be carried by hand and provide stationary
ECareadings. To implement mobile data acquisition with this unit, it is necessary to assemble
a transport mechanism and data collection system (e.g.,Cannon et al., 1994; Sudduth et al.,
2001). As reported bySudduth et al. (2003), each type of commercial ECa sensor has its
own operational advantages and disadvantages.

Soil ECa can be used to indirectly estimate soil properties if the contributions of the
other soil properties affecting the ECa measurement are known or can be estimated. In
some cases, the within-field variations in ECa due to one soil property predominate and
ECa can be calibrated directly to that dominant factor. Examples of this direct calibration
approach include estimating soil salinity in California (e.g.,Lesch et al., 1995a, 1995b) and
topsoil depth above a subsoil claypan horizon in Missouri (Doolittle et al., 1994; Kitchen
et al., 1999; Sudduth et al., 2001).

Researchers have related ECa to a number of different soil properties either within
individual fields or across closely related soil landscapes. Examples include soil moisture
(Kachanoski et al., 1988; Sheets and Hendrickx, 1995), clay content (Williams and Hoey,
1987), and CEC and exchangable Ca and Mg (McBride et al., 1990). Mapping of areas
of differing soil texture (Kitchen et al., 1996; Doolittle et al., 2002) and soil type (Jaynes
et al., 1993; Anderson-Cook et al., 2002) have also been reported.Johnson et al. (2001)
evaluated ECa for delineating a number of soil physical, chemical, and biological properties
related to yield and ecological potential and concluded that ECa was useful for delimiting
distinct zones of soil condition. Although many soil factors affecting ECa are relatively fixed
over time (e.g., clay content), others may exhibit strong seasonal dynamics. For example,
Eigenberg et al. (2002)related a time sequence of ECa maps to temporal changes in available
soil nitrogen and hypothesized that it might be possible to use ECa measurements as an
indicator of soluble nitrogen gains and losses in the soil over time.

Since ECa integrates texture and moisture availability, two characteristics that both vary
over the landscape and also affect productivity, ECahas been related to grain yield variations.
In a topographically diverse area of Iowa with highly contrasting soil drainage classes,
Jaynes et al. (1993)reported strong negative correlations between ECa and corn and soybean
grain yield in a wet year, but no significant correlation in a year of more normal precipitation.
In a study conducted on claypan soils in Missouri,Sudduth et al. (1995)found that grain
yield was negatively related to ECa in a dry year, with little effect found in a year with more
optimum precipitation patterns. As these studies show, the relationship between ECa and
crop yields may vary both spatially due to soil differences and temporally due to climatic
differences.

Commercial operators are using ECa sensing systems to provide soil variability in-
formation to producers. Often, the tendency is to relate ECa maps directly to crop yield
maps, with the same variable results documented above. A more thorough, and more gen-
erally applicable, procedure would be to first relate sensor data to soil profile properties
and then to relate soil variability and climatic conditions to yields. This research was un-
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dertaken to provide information needed for the first step in this procedure by document-
ing the relationship of ECa to soil properties on 12 research fields in 6 north-central US
states. Objectives were to (i) interpret differences in ECa data obtained with two com-
mercial sensors, the non-contact Geonics EM38 and the coulter-based Veris 3100, (ii)
document the relationship of ECa data to soil properties, and (iii) investigate the improve-
ment, if any, obtained by combining multiple ECa variables for estimating soil proper-
ties.

2. Materials and methods

2.1. Study fields

Data were collected on 12 soybean-corn fields, 2 each in Missouri (MO), Illinois (IL),
Michigan (MI), Wisconsin (WI), South Dakota (SD), and Iowa (IA).Table 1gives locations
and characteristic information for the twelve fields, which were part of a regional precision
agriculture research project. These fields were selected in part due to the degree of within-
field soil and production variability present, and to represent the range of climate, soil, and
landscape characteristics typical of the north-central US. This natural diversity is evidenced
by the fact that the 12 fields are included in 7 different “major land resource areas” (MLRAs,
Table 1), as defined by theU.S. Department of Agriculture (1981). For convenience, the
fields will be referred to herein by the states in which they were located, rather than the
MLRAs. However, it should be noted that any transferability of the results of this study
to other sites would be on the basis of the natural boundaries defined by the MLRAs,
irrespective of man-made political boundaries.

Soils of the study fields exhibited differences in terms of texture, parent material, and
mineralogy. For example, prevailing surface soil texture varied across the research sites
as follows: loam (Michigan), silt loam (Wisconsin), loam to clay loam (Iowa), silt loam
to silty clay loam (Illinois; Missouri; South Dakota). Subsoil texture was even more vari-
able, ranging from loamy sand at the Michigan fields to clay at the Missouri fields. Com-
plete taxonomic descriptions of the predominant soils in the study fields are given in
Table 2.

2.2. ECa sensors and response curves

The Geonics EM38 can be operated in two orientations, vertical dipole and horizontal
dipole, with effective measurement depths of approximately 1.5 m and 0.75 m, respectively
(McNeill, 1992). In this research, the EM38 was operated only in the vertical dipole mode.
We chose not to use the EM38 horizontal dipole mode because this would have required
a second data collection operation. Additionally, since the effective measurement depth of
the EM38 horizontal reading is between those of the two Veris 3100 readings, we expected
that little additional information would be obtained.

The ECa measurement from the EM38 vertical dipole mode (designated as ECa-em in
this study) is averaged over a lateral area approximately equal to the measurement depth
(McNeill, 1992). The theoretical instrument response to soil conductivity varies as a non-
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Table 1
Study field descriptions

State Field Size
(ha)

Location Major Land Resource
Area (MLRA)

Predominant Soils Average annual
precip. (mm)

Average May–September
temperature (◦C)

County Coordinates

MO F1 36 Boone 39◦13′48′′N,
92◦07′01′′W

113 Central claypan areas Mexico, Adco, Leonard 1026 21.6

GV 14 Boone 39◦14′05′′N,
92◦08′48′′W

113 Central claypan areas Mexico, Adco, Leonard 1026 21.6

IL WS 16 McLean 40◦18′01′′N,
88◦32′38′′W

110 Northern Illinois and
Indiana heavy till plain

Varna, Drummer, Chenoa 960 20.8

WN 16 McLean 40◦18′18′′N,
88◦32′38′′W

110 Northern Illinois and
Indiana heavy till plain

Varna, Swygert, Drummer 960 20.8

MI CW 20 Kalamazoo 42◦22′25′′N,
85◦35′55′′W

98 Southern Michigan
and Northern Indiana drift
plain

Kalamazoo 940 20.0

CE 28 Kalamazoo 42◦22′25′′N,
85◦35′42′′W

98 Southern Michigan
and Northern Indiana drift
plain

Kalamazoo 940 20.0

WI Z2 16 Columbia 43◦20′29′′N,
89◦20′16′′W

95B Southern Wisconsin
and Northern Illinois drift
plain

Plano, Ripon, Channahon 790 18.4

Z1 16 Columbia 43◦21′16′′N,
89◦18′55′′W

95B Southern Wisconsin
and Northern Illinois drift
plain

St. Charles, Knowles 790 18.4

SD BR 65 Brookings 44◦13′41′′N,
96◦39′04′′W

102A Rolling till prairie Kranzburg, Vienna, Brookings 576 17.6

MY 65 Moody 44◦10′15′′N,
96◦37′25′′W

102B Loess uplands and
till plains

Kranzburg, Waubay, Cubden 582 18.2

IA HH 20 Boone 41◦56′19′′N,
94◦05′16′′W

103 Central Iowa and
Minnesota till prairies

Canisteo, Okoboji, Harps 805 19.8

MG 20 Boone 41◦55′55′′N,
94◦04′34′′W

103 Central Iowa and Min-
nesota till prairies

Clarion, Nicollet, Canisteo 805 19.8
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Table 2
Taxonomic descriptions of study field soils

Soil State Taxonomic description

Adco MO Fine, smectitic, mesic Vertic Albaqualfs
Brookings SD Fine-silty, mixed, superactive, frigid Aquic

Hapludolls
Canisteo IA Fine-loamy, mixed, superactive, calcareous,

mesic Typic Endoaquolls
Channahon WI Loamy, mixed, superactive, mesic Lithic

Argiudolls
Chenoa IL Fine, illitic, mesic Aquic Argiudolls
Clarion IA Fine-loamy, mixed, superactive, mesic

Typic Hapludolls
Cubden SD Fine-silty, frigid Aeric Calciaquolls
Drummer IL Fine-silty, mixed, superactive, mesic Typic

Endoaquolls
Harps IA Fine-loamy, mixed, superactive, mesic

Typic Calciaquolls
Kalamazoo MI Fine-loamy, mixed, semiactive, mesic Typic

Hapludalfs
Knowles WI Fine-silty, mixed, mesic Typic Hapludalfs
Kranzburg SD Fine-silty, mixed, superactive, frigid Calcic

Hapludolls
Leonard MO Fine, smectitic, mesic Vertic Epiaqualfs
Mexico MO Fine, smectitic, mesic Aeric Vertic

Epiaqualfs
Nicollet IA Fine-loamy, mixed, superactive, mesic

Aquic Hapludolls
Okoboji IA Fine, smectitic, mesic Cumulic Vertic

Endoaquolls
Plano WI Fine-silty, mixed, superactive, mesic Typic

Argiudolls
Ripon WI Fine-silty, mixed, superactive, mesic Typic

Argiudolls
St. Charles WI Fine-silty, mixed, superactive, mesic Typic

Hapludalfs
Swygert IL Fine, mixed, active, mesic Aquic Argiudolls
Varna IL Fine, illitic, mesic Oxyaquic Argiudolls
Vienna SD Fine-loamy, mixed, superactive, frigid Cal-

cic Hapludolls
Waubay SD Fine-silty, mixed, superactive, frigid Pachic

Hapludolls

linear function of depth, as given by Eq.(1) (McNeill, 1980).

Rem = 4z(4z2 + 1)
3/2

(1)

whereRem is the relative response of EM38 andz the distance below sensor (m).
Sensitivity in the vertical mode is highest at about 0.4 m below the instrument (Fig. 1).

The ECameasurement is an integrated response to changes in soil conductivity with depth, as
weighted by this instrument response function (McNeill, 1992). The EM38 was combined
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Fig. 1. Relative response of ECa sensors as a function of depth. Responses are normalized to yield a unit area
under each curve.

with a data acquisition computer and differential GPS (DGPS) system for mobile data
collection, as described bySudduth et al. (2001).

The Veris 3100 (Lund et al., 1999) uses rolling coulter electrodes to directly sense soil
electrical conductivity. Measurement electrodes are configured to provide both shallow and
deep readings of ECa (designated as ECa-shand ECa-dp, respectively). As with the EM38,
the Veris 3100 response to soil conductivity varies as a nonlinear function of depth. The
electrodes of the Veris 3100 are configured in a Wenner array, an arrangement commonly
used for geophysical surveys (Milsom, 1996). The theoretical response of the Wenner array
is given by Eq.(2) (Roy and Apparao, 1971).

Rw =
(

8Lz

3

)((
L2

9
+ 4z2

)−3/2

−
(

4L2

9
+ 4z2

)−3/2
)

(2)

whereRw is the relative response of Wenner array,L the distance between outermost elec-
trodes (m) andz is the distance below sensor (m).

For the Veris 3100 shallow reading, the value ofL in Eq.(2) is 0.7 m; for the deep reading
it is 2.2 m. The graph of these responses (Fig. 1) shows them to be similar in shape to the
response of the EM38, although the two Veris responses reach a maximum nearer the soil
surface and then decrease more rapidly with depth.

Integrating the response curves ofFig. 1with respect to depth clearly shows the different
soil volumes examined by the sensors (Fig. 2). With the Veris shallow reading (ECa-sh),
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Fig. 2. Cumulative response of ECa sensors as a function of depth.

90% of the response is obtained from the soil above the 30-cm depth. With the Veris deep
reading (ECa-dp), 90% of the response is obtained from the soil above the 100-cm depth.
With the EM38 vertical reading (ECa-em), 70% of the response is obtained above about
1.5 m. By integrating Eq.(1), it can be shown that 90% of the EM38 vertical response is
obtained above about 5 m. The response curves ofFigs. 1 and 2are based on equations that
assume a homogeneous soil volume. Actual weighting functions will vary somewhat due
to ECa differences among soil layers, with a highly conductive surface layer reducing the
response depth (Barker, 1989).

2.3. Data collection

The ECa data for each field were collected with both sensors on the same date, either
after harvest or prior to planting (Table 3). The Veris 3100 and Geonics EM38 were operated
in tandem, taking measurements on transects spaced approximately 10 m apart. Soil ECa,
in milliSiemens per meter (mS m−1), was recorded on a 1-s interval, corresponding to a
4–6 m data spacing. Between 4400 and 13,000 individual ECa measurements were obtained
for each field. Data obtained by differential GPS was associated with each sensor reading
to provide positional information with an accuracy of 1.5 m or better. Raw ECa data were
offset by 1 s to compensate for the position of the GPS antenna ahead of the sensor and for
time lags in the data acquisition system (Sudduth et al., 2001).
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Table 3
Summary of whole-field ECa datasets

State Field Sampling date ECa-em ECa-sh ECa-dp 0–60 cm soil
temperature (◦C)

Mean
(mS m−1)

CV Mean
(mS m−1)

CV Mean
(mS m−1)

CV

MO F1 16 November 1999 30.7 0.12 9.7 0.32 19.6 0.43 15.3
GV 17 November 1999 34.8 0.18 15.2 0.49 23.7 0.49 13.8

IL WS 14 October 1999 32.8 0.24 27.9 0.25 41.1 0.29 15.5
WN 14 October 1999 30.7 0.28 27.7 0.29 39.3 0.31 16.2

MI CW 1 May 2001 7.6 0.28 5.2 0.58 6.1 0.49 16.5
CE 1 May 2001 7.1 0.21 6.8 0.29 8.6 0.26 16.5

WI Z2 2 May 2001 15.5 0.17 15.1 0.34 20.8 0.27 17.9
Z1 2 May 2001 15.3 0.11 12.3 0.41 21.0 0.19 17.9

SD BR 27 October 2000 26.7 0.12 12.1 0.45 18.9 0.29 6.0
MY 20 October 2000 28.3 0.26 15.1 0.62 27.4 0.43 11.2

IA HH 11 November 1999 36.7 0.31 35.2 0.46 46.3 0.46 14.0
MG 10 November 1999 31.3 0.33 23.3 0.57 36.3 0.55 14.8

Using our previously reported approach (Sudduth et al., 2001), a calibration transect
was established to monitor ECa sensor drift during each field survey. Data were collected
on this transect at least every hour, and raw ECa readings were adjusted based on any
change in calibration transect data. As expected, the direct ECa sensing approach of the
Veris system was much less prone to instrument drift than was the EM38; in fact none of
the Veris data collected in this study required adjustment. In practice, drift compensation
would probably not be required for Veris ECa surveys. However, drift evaluation and/or
compensation should be a routine operation to maintain the quality of EM38 surveys.

To document soil temperature at the time of data collection, multiple readings were
obtained with a handheld thermocouple probe. Data were collected on a 15-cm depth incre-
ment and averaged to a 60-cm depth. Soil temperature data were obtained and averaged by
field, except for the MI and WI fields, where a single set of temperature data was collected
representing both fields (Table 3).

After ECa data were mapped, between 12 and 20 calibration sampling sites were selected
within each field. These sites were chosen by a soil scientist familiar with the soils in the
particular field to provide ECa values distributed similarly to those in the ECa map, with
the additional goal of including samples from all the landscape positions and soil map
units present in the field. One 4.0-cm diameter core 120 cm in length was obtained at
each site using a hydraulic soil-coring machine. Cores were examined within the field
by a skilled soil scientist and pedogenic horizons identified. Cores were segmented by
horizon for laboratory analysis. Soil moisture was determined gravimetrically. Additionally,
samples for each horizon were analyzed at the University of Missouri Soil Characterization
Laboratory using methods described by theNational Soil Survey Center Staff (1996). Data
were obtained for the following properties: sand, silt, and clay fractions (pipette method);
CEC (ammonium acetate method); organic C; and saturated paste EC.
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2.4. Data analysis

To allow comparison between ECa sensors, a combined dataset was created for each
field. Each Veris data point was paired with the nearest EM38 data point based on GPS
coordinates. If a match was not found within a 2 m radius, that point was removed from the
comparison dataset. Pearson correlation coefficients (r) were calculated between the data
obtained with the different ECa sensors.

Soil property data were obtained by horizon, rather than on an even depth increment. To
facilitate comparison across calibration points, a depth-weighted mean was calculated for
each soil property at each calibration point. These horizon values were also used to calculate
the profile standard deviation (PSD) at each calibration point, providing a measure of the
variability in each soil property with depth. Because ECa sensor response is not constant
with depth, three additional sets of data were created by weighting each soil property profile
by the sensor response curve (Fig. 1).

Analysis of the relationship between ECa and soil properties was carried out for each
data source (ECa-em, ECa-sh, and ECa-dp) and soil property. In previous work with a subset
of these data (Sudduth et al., 2003), we found a lack of significant spatial autocorrelation,
likely caused by the small number (12–20) and spatial dispersion of the calibration points
in each field; therefore, we conducted a non-spatial analysis between ECa and soil proper-
ties. Pearson correlation coefficients were calculated between ECa and soil properties (soil
moisture, clay, silt, sand, organic C, CEC, and saturated paste EC). Regressions were per-
formed to estimate soil properties from (i) each individual ECa measurement, (ii) both Veris
3100 ECa measurements, and (iii) all three ECa measurements. Only statistically significant
(P≤ 0.05) parameters were retained in the final regression equations.

3. Results and discussion

3.1. Comparison of ECa data

Soil ECa data obtained with each sensor exhibited similar qualitative trends at the field
scale. As expected, field mean ECa (Table 3) was highest for the fields with finer-textured
soils (MO, IL, IA, SD) and lower for the fields with coarser-textured soils (MI and WI). The
most variation (in terms of CV) in ECa values was found in the Iowa fields, which had the
widest range in soil texture, from loam to clay loam. In general, ECa measured by EM38
was either less variable (MO, MI, WI, SD, IA) or exhibited a similar level of variation (IL)
as Veris 3100 data (Table 3).

Correlation coefficients between the various ECa measurements for each field are shown
in Table 4. With the exception of two fields, the highest correlations were found between
ECa-emdata and ECa-dp data. Correlations between ECa-emdata and ECa-shdata were con-
sistently the lowest, while correlations of ECa-dp to ECa-sh were intermediate. The reason
behind this ranking can be discerned from the differences between the response curves for
the various sensors (Figs. 1 and 2), where the ECa-dpresponse curve lies between the ECa-sh
curve and the ECa-emcurve. Because the two fields in each state were generally similar in
terms of parent material, mineralogy, and management, combining these data yielded cor-
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Table 4
Correlation coefficients (r) between different ECa measurements

State Field By-state correlationsa By-field correlationsa

ECa-emvs.
ECa-dp

ECa-emvs.
ECa-sh

ECa-dp vs.
ECa-sh

ECa-emvs.
ECa-dp

ECa-emvs.
ECa-sh

ECa-dp vs.
ECa-sh

MO F1 0.78 0.69 0.71 0.74 0.60 0.74
GV 0.84 0.66 0.75

IL WS 0.86 0.77 0.80 0.84 0.78 0.80
WN 0.88 0.79 0.82

MI CW 0.67 0.54 0.76 0.85 0.64 0.78
CE 0.75 0.59 0.65

WI Z2 0.72 0.27 0.47 0.71 0.24 0.45
Z1 0.78 0.42 0.62

SD BR 0.84 0.79 0.85 0.75 0.69 0.79
MY 0.89 0.81 0.89

IA HH 0.95 0.88 0.91 0.95 0.89 0.92
MG 0.95 0.89 0.91

IL, MI, WI, IA 0.96 0.92 0.94

All states 0.79 0.70 0.92
a All correlations are highly significant (P< 0.001).

relations that were usually similar, and higher in some cases, than correlations calculated
within individual fields (Table 4).

Scatter plots comparing ECa data across all states (Fig. 3a) showed that the two Veris
readings were highly correlated (r = 0.92;Table 4). However, the relationship of Veris ECa
data to ECa-em (Fig. 3b and c) was not as strong (r < 0.8;Table 4). Examination ofFig. 3
shows that a common, strongly linear relationship was apparent between ECa-emand ECa-dp
across all states except Missouri and South Dakota. In fact, when data from those two states
were removed from the analysis, correlations between all pairs of ECa data sources were
≥0.92 (Table 4).

This phenomenon may be explained by differences in the degree of soil layering among
the fields. The claypan soils of the Missouri fields are highly layered in terms of clay and
CEC, two soil properties with a major effect on ECa (Sudduth et al., 2003). In fact, claypan
soils are defined as those soils where clay content doubles within a 3-cm depth increment.
This abrupt layering, combined with differences in response functions for the different
sensors (Fig. 1), explains the lower correlations seen among the data collected with the
different sensors on the Missouri fields (Table 4) and the departure of those data from the
general linear trends seen inFig. 3. Abrupt layering of ECa-affecting soil properties was
also hypothesized as a reason for the similar, but weaker, nonlinear behavior of data from
South Dakota (Fig. 3).

Over a wide range of soil conditions found in the north-central US, the data obtained
from the various ECa sensors was very similar (i.e., high correlation coefficients,Table 4),
perhaps indicating some degree of “interchangeability” between the sensors. However,
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Fig. 3. Relationships between ECa data types over all fields: (a) ECa-shvs. ECa-dp, (b) ECa-emvs. ECa-dp, and (c)
ECa-emvs. ECa-sh.

lower correlations were often obtained on a field-by-field or state-by-state basis, particularly
when relating shallow (ECa-sh) to deeper (ECa-dp and ECa-em) sensor data. At least for
some of the soils datasets investigated in this study, it appears that integration of ECa data
representing at least two different sensing depths may provide additional information related
to soil variability.

3.2. Relationship of ECa to measured soil properties

A statistical summary of profile-average soil property data for the calibration points in
each field is shown inTable 5. Many of the soil properties were highly variable within
and among fields. Considerable variation was also apparent as a function of depth, as
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Table 5
Means and mean profile standard deviations (PSDs, in parentheses) for soil properties obtained from by-horizon
analysis of calibration point cores

State Field Number
of points

Soil moistu-
re (g kg−1)

Clay
(g kg−1)

Silt
(g kg−1)

Sand
(g kg−1)

Organic C
(g kg−1)

CEC
(cmol kg−1)

Paste EC
(mS m−1)

MO F1 19 149 (37) 354 (135) 594 (135) 32 (26) 6.4 (3.5) 24.2 (8.1) 24 (7.0)
GV 15 156 (29) 321 (76) 620 (67) 60 (22) 6.5 (3.9) 22.5 (5.0) 22 (7.1)

IL WS 17 –a 298 (41) 585 (55) 113 (54) 10.1 (7.1) 21.5 (4.7) 11 (2.0)
WN 12 – 298 (40) 605 (61) 96 (68) 8.4 (6.8) 20.2 (4.6) 17 (5.0)

MI CW 16 167 (33) 130 (39) 318 (105) 552 (126) 7.5 (5.0) 10.1 (3.2) 67 (36)
CE 17 164 (30) 154 (55) 328 (161) 504 (187) 5.8 (4.6) 10.1 (3.3) 63 (37)

WI Z2 15 231 (38) 217 (40) 670 (55) 114 (61) 8.2 (5.7) 17.2 (3.0) 42 (9.2)
Z1 16 228 (15) 216 (54) 662 (97) 122 (105) 3.8 (3.1) 15.8 (3.8) 27 (5.2)

SD BR 17 126 (38) 254 (38) 430 (82) 317 (115) 8.4 (7.8) 18.8 (6.3) 32 (8.3)
MY 20 183 (24) 263 (41) 572 (61) 165 (71) 10.8 (7.8) 22.8 (5.6) 41 (11)

IA HH 15 213 (36) 261 (52) 377 (51) 354 (87) 11.4 (8.4) 24.5 (6.7) 66 (36)
MG 18 191 (32) 240 (44) 348 (34) 412 (73) 9.4 (7.3) 20.6 (5.3) 91 (42)

a Soil moisture data not available for Illinois fields.

measured by the PSD (Table 5). Mean PSDs for clay were significantly higher (Duncan’s
Multiple Range Test,P≤ 0.05) for the Missouri fields, compared to all others. For CEC,
the highest-PSD grouping included Missouri, South Dakota, and Iowa. Thus, the Missouri,
South Dakota, and Iowa fields were more layered in terms of one or both of these soil
properties that are strongly related to ECa.

3.2.1. Correlation analysis
Correlation coefficients between ECa and profile soil properties were determined by state

and for the dataset as a whole (Fig. 4). In general, highest correlations were observed for
clay and CEC. The only exception was for the South Dakota data (Fig. 4e), where highest
correlations were with soil moisture. Some soil properties were strongly related (|r| ≥ 0.5)
to ECa for some states but not for others. Examples included soil moisture (SD, IA), silt
(MO, IL, IA), sand (IA), organic C (IA), and saturated paste EC (SD).

When comparing the different weighting functions, correlations of ECa with sensor-
weighted clay content and sensor-weighted CEC were generally highest and most persistent
across all states and ECa data types (Fig. 4). This higher correlation with sensor-weighted
data supports our hypothesis that transformation of soil property data by weighting with
the sensor response function is an appropriate way to help account for curvilinearity in
the functional relationship. We previously reported similar results for the Illinois–Missouri
subset of this data (Sudduth et al., 2003).

3.2.2. Regression analysis using individual ECa variables
Second-order polynomial regression analysis was performed to estimate soil properties

as a function of ECa, both using each ECa variable independently and then (see Section
3.2.3) using combinations of the three ECa variables. Properties estimated were profile-
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Fig. 4. Correlations between weighted (surface-layer, profile-average, and sensor) soil properties and ECa data
types for each state and over all states: (a) MO, (b) IL, (c) MI, (d) WI, (e) SD, (f) IA and (g) all states. Bold letters
designate significant (P≤ 0.05) correlations. Soil moisture (M) not available in Illinois data set.
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Table 6
Regression statistics for the estimation of surface-layer soil properties as a function of ECa, using individual and
multiple-variable datasets

Soil Property State Best single-ECa model Veris shallow + deep Veris + EM38

ECa data r2 S.E.a r2 S.E. r2 S.E.

Soil moisture MO ECa-sh 0.24 29 0.48 25 0.69 19
IL –b – – – – – –
MI ECa-dp, qc 0.30 30 0.30 30 0.30 30
WI ECa-sh, q 0.33 19 0.45 17 0.52 16
SD ECa-dp 0.70 23 0.79 20 0.79 20
IA ECa-sh 0.39 32 0.39 33 0.39 33

All ECa-sh 0.23 42 0.23 42 0.50 34

Clay MO ECa-sh 0.63 35 0.63 35 0.74 30
IL ECa-sh 0.53 26 0.54 25 0.70 21
MI ECa-dp, q 0.38 32 0.46 30 0.46 30
WI ECa-sh 0.37 43 0.50 39 0.54 38
SD ECa-dp, q 0.52 17 0.52 17 0.60 16
IA ECa-em 0.55 38 0.52 39 0.57 38

All ECa-dp, q 0.55 51 0.58 50 0.66 45

Silt MO ECa-sh, q 0.62 41 0.62 41 0.63 41
IL ECa-dp, q 0.48 34 0.47 34 0.51 32
MI ECa-dp, q 0.47 94 0.47 94 0.47 94
WI ECa-sh 0.39 59 0.77 38 0.82 35
SD ECa-em 0.15 57 0.25 54 0.25 54
IA ECa-em 0.48 43 0.47 44 0.48 43

All ECa-em, q 0.12 142 0.10 144 0.30 127

CEC MO ECa-sh 0.71 2.3 0.82 1.9 0.83 1.8
IL ECa-em 0.50 2.9 0.44 3.1 0.61 2.7
MI ECa-dp, q 0.36 2.7 0.36 2.7 0.43 2.6
WI ECa-em 0.15 3.4 N.S.d 0.49 2.8
SD ECa-dp, q 0.61 2.6 0.61 2.6 0.80 2.0
IA ECa-em, q 0.77 3.5 0.72 3.8 0.77 3.5

All ECa-dp, q 0.58 5.4 0.58 5.4 0.70 4.6

a Standard errors (S.E.) are in units of g kg−1 (soil moisture, clay, silt) and cmol kg−1 (CEC).
b No soil moisture data available for Illinois fields.
c The letter “q” denotes a quadratic regression, all others are linear.
d N.S. denotes no significant (P≤ 0.05) regression.

average and surface-layer soil moisture, clay, silt, CEC, organic C, and paste EC. Estimates
for sand were not developed, since sand content is merely a linear combination of clay
and silt. Regressions were performed individually for data from each state and also for all
data combined.Table 6shows the regression statistics for surface-layer data, whileTable 7
includes statistics for profile-average data, both for single-variable and multiple-variable
analyses. Only results for the best-fit ECa variable are shown for each soil property. The
most accurate estimates were generally obtained for clay, silt, and CEC. Estimates of soil
moisture were variable, while estimates of organic C and paste EC obtained by regression
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Table 7
Regression statistics for the estimation of profile-average soil properties as a function of ECa, using individual
and multiple-variable datasets.

Soil Property State Best single-ECa model Veris shallow + deep Veris + EM38

ECa data r2 S.E.a r2 S.E. r2 S.E.

Soil moisture MO N.S.d N.S. N.S.
IL –b – – – – – –
MI N.S. N.S. 0.49 34
WI ECa-sh 0.38 27 0.71 19 0.75 18
SD ECa-dp, qc 0.68 28 0.73 26 0.68 28
IA ECa-em 0.40 36 0.34 38 0.58 31

All ECa-dp 0.15 45 0.15 45 0.24 42

Clay MO ECa-em 0.26 49 0.60 39 0.60 38
IL ECa-em 0.48 28 0.43 30 0.51 28
MI ECa-dp, q 0.42 30 0.42 30 0.42 30
WI ECa-em 0.29 20 0.54 16 0.54 16
SD ECa-em 0.22 35 0.25 35 0.22 35
IA ECa-em 0.47 49 0.52 47 0.68 39

All ECa-em, q 0.61 48 0.34 63 0.72 42

Silt MO ECa-em 0.29 46 0.38 44 0.44 42
IL N.S. 0.22 54 0.36 50
MI N.S. N.S. 0.40 107
WI ECa-sh 0.55 66 0.81 45 0.81 45
SD ECa-dp, q 0.26 91 0.35 85 0.35 85
IA ECa-em 0.37 73 0.33 77 0.50 66

All ECa-em, q 0.18 143 0.12 148 0.28 136

CEC MO ECa-em 0.40 3.4 0.47 3.3 0.70 2.5
IL ECa-em 0.57 3.5 0.59 3.5 0.79 2.6
MI ECa-em, q 0.21 3.9 N.S. 0.65 2.7
WI ECa-em 0.14 2.0 0.66 1.3 0.66 1.3
SD ECa-em, q 0.44 3.6 0.44 3.6 0.51 3.4
IA ECa-em 0.55 4.5 0.54 4.6 0.66 4.0

All ECa-em 0.66 3.8 0.49 4.7 0.70 3.6

a Standard errors (S.E.) are in units of g kg−1 (soil moisture, clay, silt) and cmol kg−1 (CEC).
b No soil moisture data available for Illinois fields.
c The letter “q” denotes a quadratic regression, all others are linear.
d N.S. denotes no significant (P≤ 0.05) regression.

on a single ECa variable were of relatively low accuracy. Only in two cases were coefficients
of determination greater than 0.42 obtained for organic C or paste EC—Missouri profile-
average organic C was estimated withr2 = 0.48 and Iowa surface-layer organic C was
estimated withr2 = 0.78. Because of this, data for organic C and paste EC were not included
in Tables 6 and 7.

Surface-layer clay, silt, and CEC were usually estimated with higher or similar accuracy
levels than profile-average values. Best estimates of surface-layer soil properties were ob-
tained with each of the three datasets (ECa-em, ECa-sh, and ECa-dp) several times, depending
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Fig. 5. Relationships between ECa data and CEC and clay content measured at calibration points for all study
fields: (a) ECa-dp vs. top-layer clay, (b) ECa-em vs. profile-average clay, (c) ECa-dp vs. top-layer CEC, and (d)
ECa-emvs. profile-average CEC.

on the specific property and state (Table 6). Profile-average soil properties were usually
estimated with the highest accuracy using ECa-emdata, although ECa-dpand (rarely) ECa-sh
data were most predictive for some cases (Table 7). Quadratic equations were significant for
less than half of the soil parameters; for the others only the linear ECa term was significant.

When considering data across all states, regressions for soil moisture, silt, organic C,
and paste EC were of low accuracy (r2 < 0.4). However, regressions for clay and CEC
were of reasonable accuracy (r2 ≥ 0.55) across all states, both for surface-layer (Table 6)
and profile-average (Table 7) datasets.Fig. 5 shows the relationship of the best-fit ECa
dataset to each of these clay and CEC datasets. In all four cases, the data from the var-
ious states merged into a single, relatively unified data distribution. The clay-ECa rela-
tionship appeared to be somewhat different for the Iowa data than for the other states
(Fig. 5a and b). However, this difference was not apparent when considering the CEC-
ECa relationship (Fig. 5c and d). The relationships of ECa data to CEC and clay were
surprisingly good, considering that data were collected on the different fields at different
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times of the year (Table 3) and under different soil moisture conditions (Table 4). These
results indicate that it may be possible to develop general calibrations relating ECa to
CEC and clay content that are applicable across a wide range of soil and climatic condi-
tions.

Because studies have found soil temperature to have an effect on ECa (e.g.,McKenzie
et al., 1989; Slavich and Petterson, 1990; Sudduth et al., 2001), we investigated the effect of
soil temperature differences among the different fields (Table 3) on the regression estimates
of soil properties. Although an equation is available (Rhoades et al., 1999) for correcting
solution electrical conductivity to a standard temperature, researchers (McKenzie et al.,
1989; Sudduth et al., 2001) have measured temperature effects on ECa that are consid-
erably smaller than the approximately 2% per degree C indicated by this equation. Due
to our uncertainty about the applicability of the solution equation to field ECa measure-
ments, we included soil temperature as a multiplicative effect on ECa in the regression
analysis rather than using it to make an explicit temperature correction. In all cases, little
or no improvement in soil property estimates (increase inr2 < 0.04) was seen when com-
paring these regressions to those that did not include soil temperature (Tables 6 and 7).
Therefore, we concluded that the soil temperature differences (approximately 12◦C) seen
among study fields had a relatively minor effect on the relationship of ECa to soil prop-
erties. This conclusion is supported by earlier work on one of the Missouri study fields
(Sudduth et al., 2001), where ECa data were collected over a wide range of soil tem-
peratures (4–28◦C). ECa-based estimates of topsoil depth were only slightly improved
when temperature was included explicitly in the regression model, compared to modeling
the temperature effect by dividing the dataset into two temperature classes (4–16◦C and
16–28◦C).

3.2.3. Regression analysis using multiple ECa variables
Another series of regression analyses included multiple ECa data sources for estimating

the same soil properties listed above. Stepwise second-order polynomial (including inter-
actions) analyses included (i) both Veris datasets—ECa-shand ECa-dpand (ii) all three ECa
datasets. Single-state estimates of soil properties were improved by including both Veris
ECa datasets in about 40% of the cases. When including Veris and EM38 data, improved
estimates were obtained about 65% of the time, and these estimates were generally better
than those obtained using only Veris data. For multi-state analyses, soil property estimates
were improved when all three ECa variables were allowed to enter the regression, but were
generally not improved by including just the two types of Veris data. For both single ECa
and multiple ECa regressions, better estimates of soil properties were most often obtained
within a single state than across multiple states (Tables 6 and 7).

Integration of multiple ECa variables can provide an increased understanding of soil
variability. However, collection of multiple datasets involves practical and economic con-
siderations. The Veris 3100 is attractive in this regard because it provides two ECa
measurements in a single pass over the field. Alternatively, EM-based sensors that simul-
taneously provide data from two measurement depths have recently become available.
Although collecting data with two distinct sensors (i.e., Veris 3100 and EM38) can increase
information content, the added effort and expense is probably justifiable only in limited
circumstances.
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4. Conclusions

We found both similarities and differences in ECa data obtained with the Geonics EM38
(ECa-em) and the Veris 3100 (ECa-shand ECa-dp). Differences were attributed to differences
between the depth-weighted response functions for the three data types, coupled with dif-
ferences in the degree of soil profile layering between sites. Because the claypan soils of
the Missouri fields exhibited the greatest by-depth variation in clay content and CEC, two
primary drivers of ECa, differences between ECa data types were most pronounced on these
fields.

Correlations of ECa with clay content and CEC were generally highest and most persis-
tent across fields and ECa data types. Correlations with other soil properties (soil moisture,
silt, sand, organic C and paste EC) were lower and more variable for the fields used in the
study. Within a single state, profile-average clay and CEC could be estimated reasonably
well as a function of a single ECa variable, usually ECa-em. Surface-layer clay and CEC were
also estimated reasonably well with a single variable, generally either ECa-shor ECa-dp. Soil
property estimates were often improved by using a combination of multiple ECa variables.

Regressions estimating clay and CEC as a function of ECa across all study fields were
reasonably accurate (r2 ≥ 0.55). These field sites from six states included soils of differing
parent material (e.g., glacial till, loess), variable soil weathering (e.g., with and without
carbonates, varying degree of clay formation), dissimilar levels of organic matter accu-
mulation, and variations in management (e.g., tilled versus no-till, number of years in crop
production). Given these dissimilarities, it is quite surprising and significant that such strong
relationships between ECa and clay and CEC were obtained for the combined multi-state
dataset.
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